
108 Theoretical Division Nuclear Weapons Program Highlights 2004–2005

Computational Sciences

Accelerated Inexact
Newton Method for
Casting Simulations
Andrew P. Kuprat (T-1)

This year T-1 implemented a fast
nonlinear solver in the 3D Truchas
casting simulation code. Truchas
is the main product of the ASC-

funded TELLURIDE project (a collaboration
involving MST, CCS, T, and other divisions).
Truchas simulates the entire casting
process: flow of molten alloy, heat transfer,
solidification of alloy, induced stresses, etc.

Truchas has to solve for the heat transfer and
elastic displacement fields at each time step,
and for both of these fields this amounts to
solving a large nonlinear system of equations

 f(x) = 0 ,

where f(x) and x are vectors with dimension
of order the number of cells in the
simulation—typically hundreds of thousands.

The classic Newton iteration to solve this
problem could be written as

Do until done
 ui ← IJ[f(xi)]

 xi+1 ← xi – ui

Here, IJ[f(xi)] means take the residual vector
f(xi) and multiply it on the left by the Inverse
of the Jacobian of f evaluated at xi.

Although Newton’s method has the
advantage of being rapidly convergent in
a neighborhood of the root, it is typically
very expensive to evaluate the Jacobian
matrix. Indeed, evaluation of the residual
function f(x) and its Jacobian f '(x) may
involve evaluating expensive “subscale”
models. For example, if f(x) is the residual for
heat transfer, it may require evaluation of a
microscale phase change model if a casting is
undergoing solidification. Evaluation of the
Jacobian f '(x) will be in general even more
expensive than evaluation of f(x) itself, and

so the classic Newton’s method is seen to be
relatively expensive.

In the 1990’s, Carlson and Miller [1] designed
a method, now called the Accelerated Inexact
Newton (AIN) Method, that reduced or
eliminated the need for evaluation of the
exact Jacobian. This method can be described
as

Do until done
 ui ← AIJ[f(xi)]

 xi+1 ← xi – FPA(ui)

Here, AIJ[f(xi)] signifies application of an
Approximate Inverse Jacobian matrix to
the residual f(xi). This approximate Inverse
Jacobian could be an “old” exact Inverse
Jacobian evaluated at a point ˜ x close to
but not necessarily equal to xi. In fact, the
Approximate Inverse Jacobian may be the
application of a “preconditioner” subroutine
that doesn’t correspond to any exact Inverse
Jacobian evaluated at any point whatsoever.
The reason this iteration converges is the
presence of “FPA” which means “Fixed Point
Accelerator.”

FPA monitors changes in the inputs ui fed
to it, and deduces ways to correct the ui’s
in order for the composition FPA º AIJ to
produce corrections closer what would have
been produced by the true Inverse Jacobian IJ
if it had been available.

We have implemented the AIN method
for heat transfer and thermomechanics
solves, with the AIJ operations being
“preconditioners” for the two respective
systems. (The preconditioners amount to
approximate evaluation of the Jacobian, and
then a small number of sweeps of Symmetric
Successive Over-Relaxation (SSOR), in order
to approximately invert this approximate
Jacobian.) The result of implementing
the AIN method in Truchas has been a
speed-up of the nonlinear heat transfer and
thermomechanical displacement solves in
both serial and parallel. Speed-ups of up to
4x have been observed when compared to the
existing Newton-Krylov method used by the
Truchas code. In Figs. 1 and 2, we see elastic
displacement field components computed by
the Truchas code.

A U.S. Department of Energy Laboratory LA-UR-05-3853 June 2005 109

Computational Sciences

[1] Neil N. Carlson and Keith Miller, “Design
and Application of a Gradient-Weighted
Moving Finite Element Code I: In One
Dimension,” SIAM J. Sci. Comput. 19, 3,
pp. 728–765, 1998. (See Section 9.)

Figure 1—
Radial displacement
field computed by the
Truchas code on a
typical metal casting.
Courtesy Kin Lam,
ESA-WR.

Figure 2—
Axial displacement
field, same casting.

For more information, contact
Andrew P. Kuprat (kuprat@lanl.gov).

Acknowledgements
I would like to acknowledge NNSA’s Advanced
Simulation and Computing (ASC), Advanced
Applications Program for financial support.

